



SYMSITES



Funded by  
the European Union

# Industrial Urban Symbiosis in Practice: Lessons from four EcoSites

**SYMSITES replication webinar**  
**29/01/2026**

*This project has received funding from the European Union's Horizon Europe program under GA Project 101058426.*



SYMSITES

# Welcome!

## Industrial Urban Symbiosis in Practice: Lessons from four EcoSites

29.01.2026 - 9:00-10:30 CET



Funded by  
the European Union



SYMSITES

# Housekeeping

- Please **change your name** to include your full name & your organisation and turn on your camera if you can
- Please keep your **microphone muted** while others are speaking
- Any questions? **Write them in the chat** and we try to address them there or during our panel
  
- We will **record the webinar** and share all relevant slides and materials afterwards!



CC Pixabay – Ciker-Free-Vector-Images 303265



Funded by  
the European Union



SYMSITES

# Webinar Agenda

| Time (CET)  | Agenda item                                                        | Speaker                                  |
|-------------|--------------------------------------------------------------------|------------------------------------------|
| 9:00-9:05   | Welcome                                                            | ICLEI – Felix Schumacher                 |
| 9:05-9:15   | Replicating I-US solutions – setting the scene                     | ICLEI – Nikolai Jacobi                   |
| 9:15-9:22   | The SYMSITES EcoSites and their pilot systems                      | AITEX – Emma Pérez                       |
| 9:22-9:29   | Water reuse – challenges and opportunities                         | FOVASA - Jose Antonio Magdalena Cadelo   |
| 9:29-9:36   | Scaling of a pilot biogas plant for wastewater reuse               | BOKU – Wolfgang Gabauer                  |
| 9:36-9:41   | Mentimeter poll                                                    | ICLEI + Audience                         |
| 9:41-9:48   | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen         |
| 9:48-9:55   | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos           |
| 9:55-10:25  | Panel discussion                                                   | ICLEI – Chiara Collucia +EcoSite leaders |
| 10:25-10:30 | Wrap up and outlook                                                | ICLEI – Felix Schumacher                 |



Funded by  
the European Union



SYMSITES



# Your hosts

Today's replication webinar is hosted by ICLEI Europe – Local Governments for Sustainability. ICLEI is committed to advancing local sustainability across Europe and beyond.



Felix  
Schumacher



Nikolai  
Jacobi



Chiara  
Collucia



Jon Jonoski



Funded by  
the European Union



SYMSITES

# Webinar Agenda – Introductory presentations

| Time (CET)       | Agenda item                                                        | Speaker                                  |
|------------------|--------------------------------------------------------------------|------------------------------------------|
| 9:00-9:05        | Welcome                                                            | ICLEI – Felix Schumacher                 |
| <b>9:05-9:15</b> | <b>Replicating I-US solutions – setting the scene</b>              | <b>ICLEI – Nikolai Jacobi</b>            |
| <b>9:15-9:22</b> | <b>The SYMSITES EcoSites and their pilot systems</b>               | <b>AITEX – Emma Pérez</b>                |
| 9:22-9:29        | Water reuse – challenges and opportunities                         | FOVASA - Jose Antonio Magdalena Cadelo   |
| 9:29-9:36        | Scaling of a pilot biogas plant for wastewater reuse               | BOKU – Wolfgang Gabauer                  |
| 9:36-9:41        | Mentimeter poll                                                    | ICLEI + Audience                         |
| 9:41-9:48        | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen         |
| 9:48-9:55        | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos           |
| 9:55-10:25       | Panel discussion                                                   | ICLEI – Chiara Collucia +EcoSite leaders |
| 10:25-10:30      | Wrap up and outlook                                                | ICLEI – Felix Schumacher                 |



Funded by  
the European Union

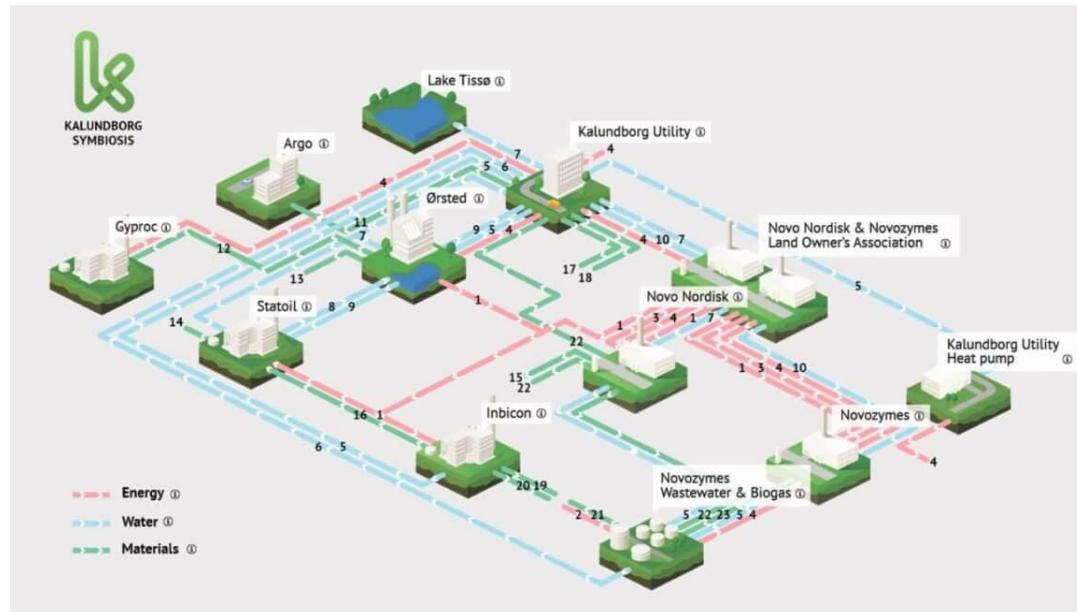
...I-S is not a new concept. the Kalundborg site has developed the world's first industrial symbiosis with a circular approach to production since 1972.

**Sotenäs / Sweden**, industry collaboration between marine food industry consists of, in addition to the food industry, a privately owned biogas and water treatment plant, agricultural activities, land-based fish farming and algae farming, and a beer brewery to **avoid waste and save virgin production inputs**.



**Helsingborg / Sweden**. This initiative estimates preventing around 120,000 tons of **CO2 emissions** annually, with the nearby city having avoided emitting 1.6 million tons of CO2 since 2007.

**Wastewater treatment**: The treated wastewater from the **Kalundborg Utility** is then passed through a heat exchanger at the heat pump utility, which can produce approx. 80,000 MWh per year, covering more than 30% of Kalundborg Utility's annual purchase of **district heating**.


**Ulsan City/Korea** have benefited from 14 energy symbiosis networks of the **high-grade heat** to reduce the energy consumption and carbon emission.



SYMSITES

# Industrial Symbiosis

- Underutilised resource exchange - waste, by-products, residues, energy, water, and materials
- Cross-company cooperation
- Reduction of waste & costs





SYMSITES

# What is I-US and why does it matter for cities?

## What is Industrial & Industrial-Urban Symbiosis?

- Resource sharing between industries (IS)
- Extends to cities & urban flows (I-US)
- Reuse of waste, energy, water, materials
- Requires collaboration hubs & facilitators

## Why I(-U)S Matters for Cities & Regions?

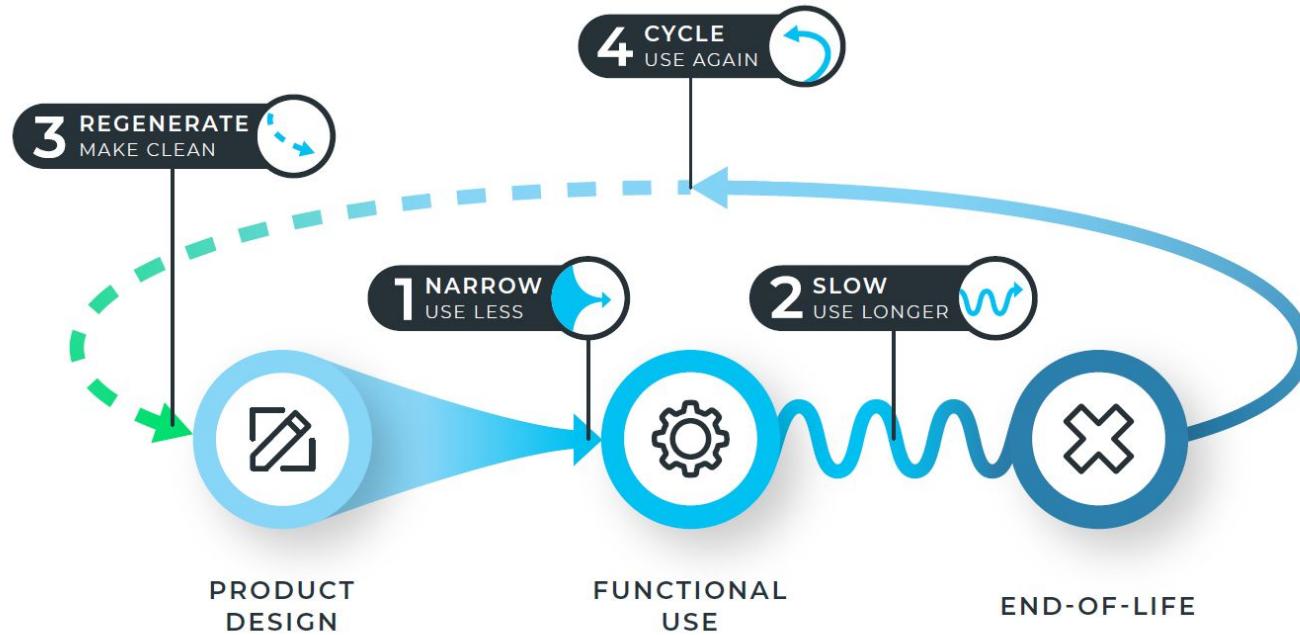
- Boosts circular economy & resource efficiency
- Reduces emissions, waste and costs
- Creates local economic opportunities
- Strengthens energy security & resilience

## Key roles for local authorities?

- Mobilizing: embed I(-U)S in strategies & planning
- Facilitating: connect stakeholders & map flows
- Educating: raise awareness & build skills
- Incentivizing &
- Managing through funding & utilities



Funded by  
the European Union


# How does I(-U)S enable sustainable cities and communities?

- A lever towards **strengthening local Industry and Resource security** – Reduce dependence on global supply chains, strengthening local resilience to price and supply shocks.
- **Toward achieving city climate neutrality and circular economy goals** – Reducing consumption and GHG emissions, extending resource life-time, reducing waste generation and resource extraction, minimising biodiversity loss.
- **Regional and economic development** – Maintaining key industry, attracting new businesses, , alternative sources of revenue, new green job opportunities in innovation to address real time technology needs.
- **Energy security and decarbonisation** – Process heat reuse, district heating and replacement of fossil fuels.



Funded by  
the European Union

# The Circular Transition



Circle Economy – Circularity Gap Report 2023



Funded by  
the European Union



SYMSITES

# EU policy on I-US

- **Embedded in the Circular Economy Action Plan (CEAP)**
- **I-US features across and is funded through EU Innovation Programmes**
- **Supporting governance and standardization** – e.g. CCRI working groups
- **Upcoming Circular Economy Act (CEA)**  
–e.g. Harmonising end-of-waste criteria;  
(3) regulatory and certification systems  
for secondary and by-product streams



Funded by  
the European Union



SYMSITES

# Standardization of I-US

- The issue: I-US is strongly supported by EU policy ambitions, but implementation lags...
- A major barrier is the lack of harmonized standards: actors do not share common definitions, data formats...
- Standardization is the missing link between policy and practice, translating high-level circular economy goals into action...
- CWA 17354:2018 provides an initial foundation
- RISERS I-US Standardization Roadmap



Funded by  
the European Union



SYMSITES

# Non-technological barriers to I-US

- **Fragmented governance and regulation** - Unclear roles, overlapping mandates, inconsistent permitting...
- **Lack of harmonised standards and legal certainty** - Absence of shared definitions, quality criteria, liability rules, and contractual frameworks creates risk for cities....
- **Financial and business-model uncertainty** - High upfront costs, limited access to funding, unclear pricing of secondary resources,...
- **Weak information flows and data interoperability**
- **Skills gaps and limited social acceptance and complex stakeholder landscape**



Funded by  
the European Union





SYMSITES



Funded by  
the European Union

# Introduction to SYMSITES

Emma Pérez Hernández  
Project Manager, R&D Department, AITEX

*This project has received funding from the European Union's Horizon Europe program under GA Project 101058426.*



SYMSITES

# INDUSTRIAL-URBAN SYMBIOSIS

## THE PROBLEM



## THE SOLUTION



## THE OPPORTUNITY



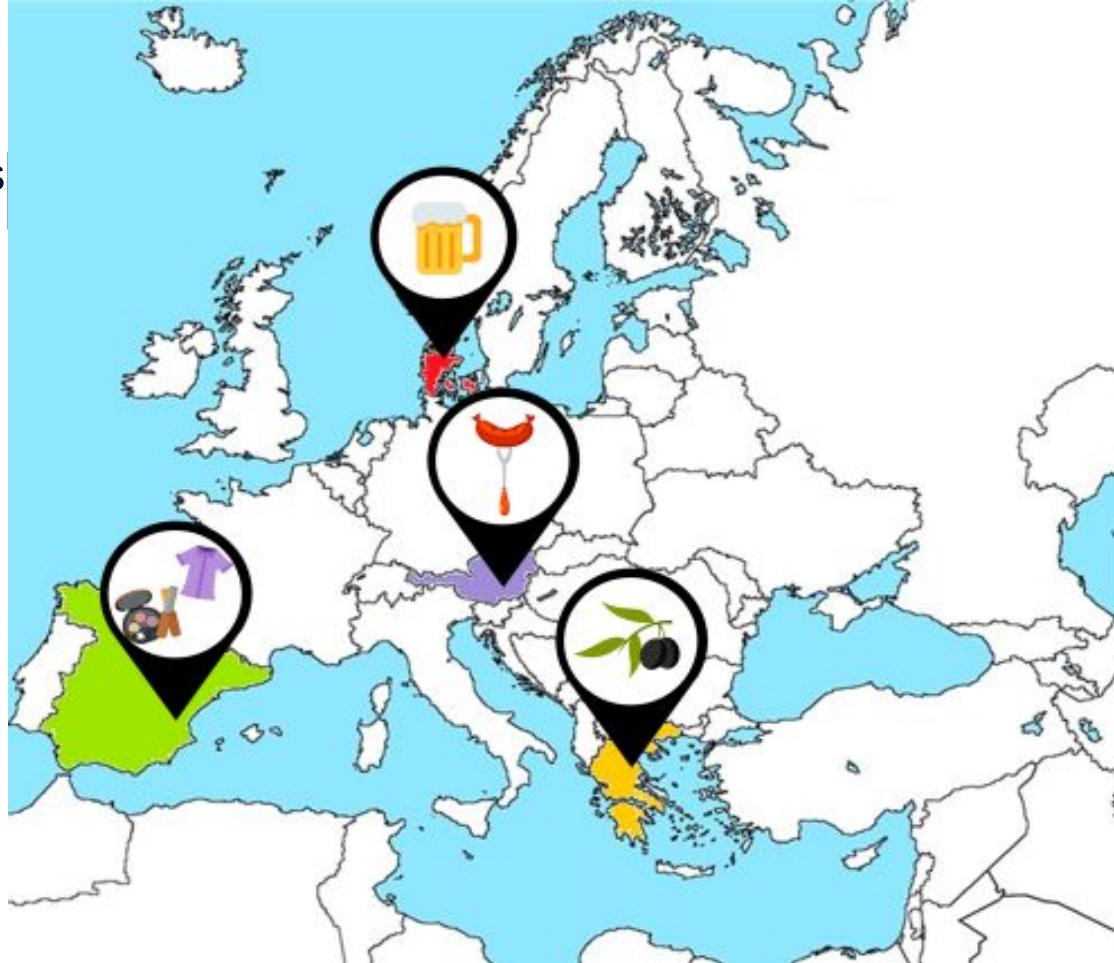
**SYMSITES**



Funded by  
the European Union

## Industrial-Urban Symbiosis




EcoSite concept



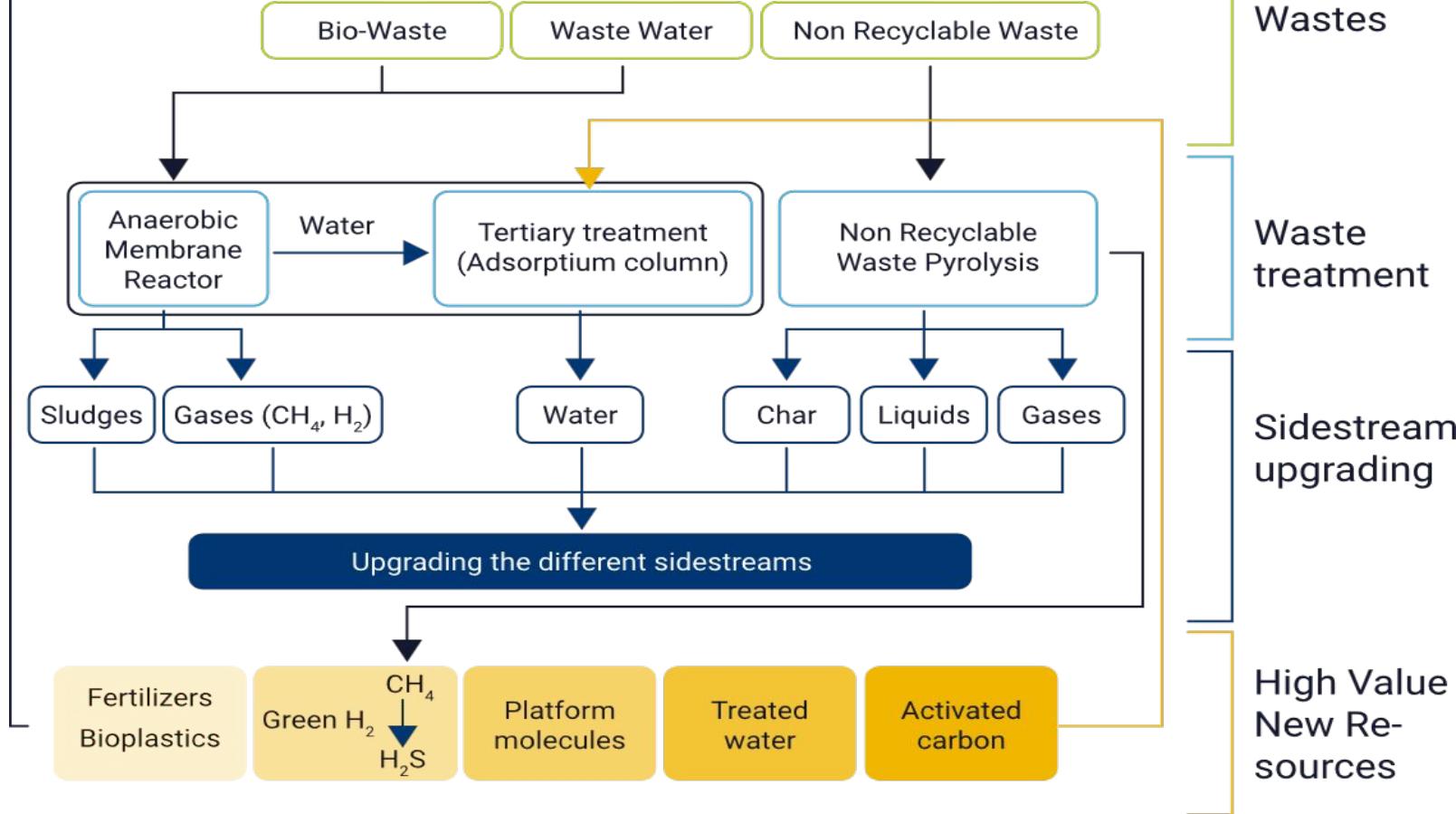
Funded by  
the European Union



SYMSITES

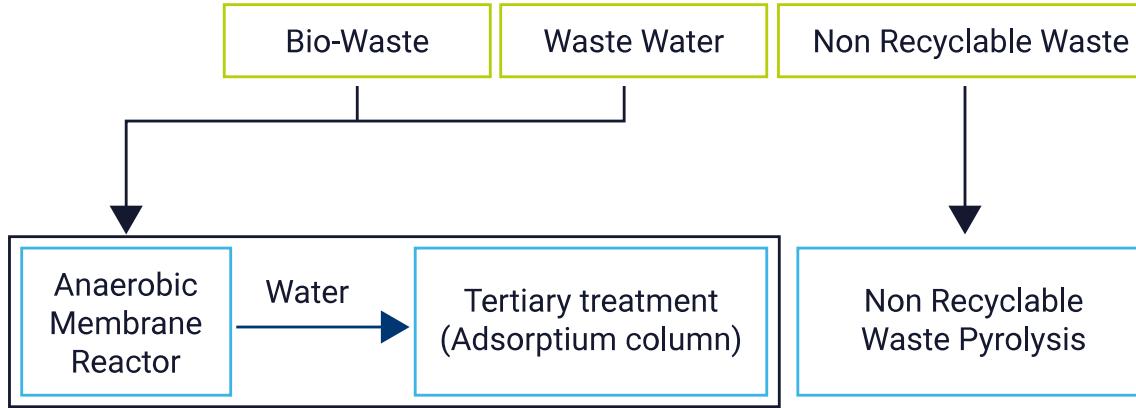


WHERE TO FIND  
THE ECOSITES?




Funded by  
the European Union




SYMSITES

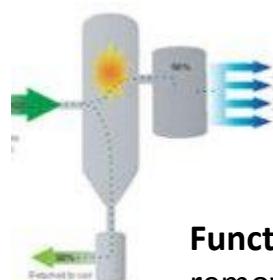
## Symbiotic Re-use





SYMSITES




Wastes

Waste treatment

**Energy** from  $\text{CH}_4$  and  $\text{H}_2$  via metabolic route



**Pyrolysis optimization** of NRW using  $\text{CH}_4$  as an energy source.

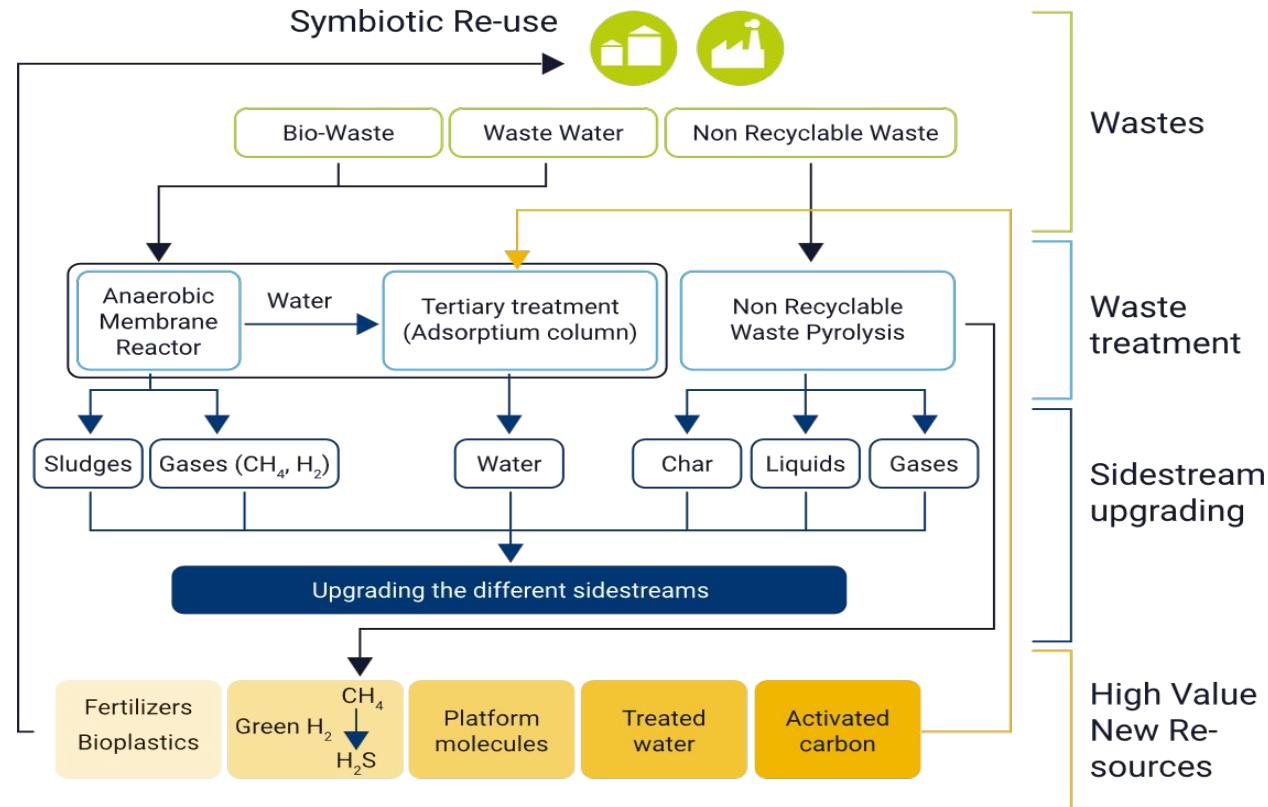


**Antifouling treatment**

- Nano structured coatings
- Carbon dots coatings
- Magnetically induced membrane vibration

**Functionalized AC** with LigNPs and/or CDs to remove emerging pollutants.




SYMSITES

# 4 EcoSites WITH THE SAME GOAL

Enhance recovery of resources, energy and reclaimed water from wastes



Technologies for water reuse with an I-U Symbiosis perspective





SYMSITES

## CONSORTIUM MAP

info@symsites.eu



CSIC  
Consejo Superior de Investigaciones Científicas

Bar-Ilan  
University

itg

UPC  
UNIVERSITAT POLITÈCNICA DE CATALUNYA  
CATALONIA TECH

KU LEUVEN

Facsa  
Water Intake & desalination

FOVASA  
medioambiente

BOKU  
Institute of Environmental Biotechnology

ESGRAVATECNO  
TOKYOTECHNO

green3  
Sustainable Resource Development

OSM-DAN  
National Oil Spill Development

PROJECT  
HUB360

ICLEI  
Local Government for Sustainability

DTU

AGRA  
Consulting & Planning Ltd.

GdC  
beauty group

BOFA

BERGER  
SCHÄFER

AAAT  
BIOGAS TECHNOLOGY

BOFA

BORNHOLMS  
ENERGI & FORSYNING

GÅRDEJER FINN  
HARILD

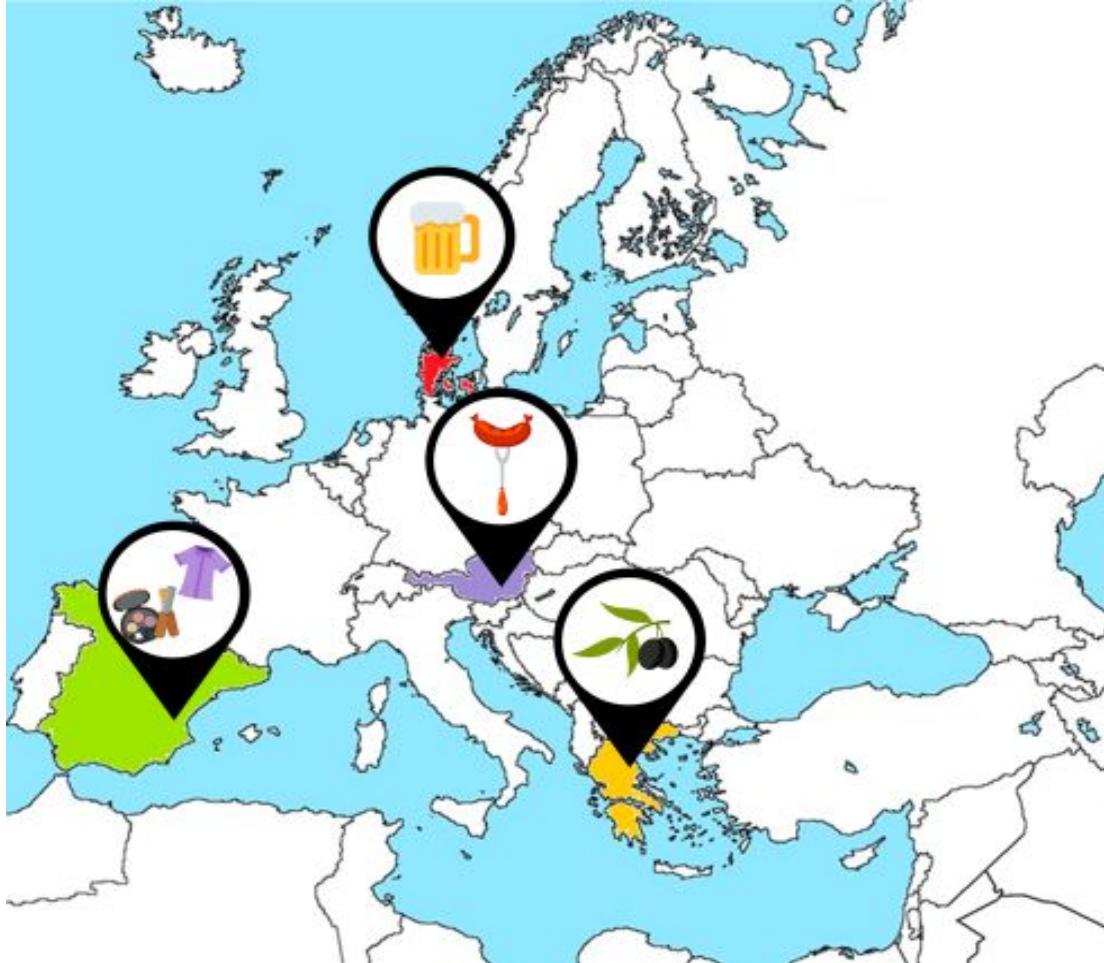
Svaneke

DAVO  
www.davo-climate.eu

GAV  
SÜDÖSTLICHES TULLNERFELD

SPITZER  
ENGINEERING

K-Link


Municipality of New Athina  
www.newathina.gr

SIRMET  
ENGINEERING & MANAGEMENT

CE  
CONSULTING  
ENGINEERS



SYMSITES



Funded by  
the European Union



SYMSITES

# THANKS FOR YOUR ATTENTION

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.  
The European Union can not be held responsible for them.



Funded by  
the European Union



SYMSITES

# Webinar Agenda – Water and wastewater reuse

| Time (CET)       | Agenda item                                                        | Speaker                                       |
|------------------|--------------------------------------------------------------------|-----------------------------------------------|
| 9:00-9:05        | Welcome                                                            | ICLEI – Felix Schumacher                      |
| 9:05-9:15        | Replicating I-US solutions – setting the scene                     | ICLEI – Nikolai Jacobi                        |
| 9:15-9:22        | The SYMSITES EcoSites and their pilot systems                      | AITEX – Emma Pérez                            |
| <b>9:22-9:29</b> | <b>Water reuse – challenges and opportunities</b>                  | <b>FOVASA - Jose Antonio Magdalena Cadelo</b> |
| <b>9:29-9:36</b> | <b>Scaling of a pilot biogas plant for wastewater reuse</b>        | <b>BOKU – Wolfgang Gabauer</b>                |
| 9:36-9:41        | Mentimeter poll                                                    | ICLEI + Audience                              |
| 9:41-9:48        | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen              |
| 9:48-9:55        | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos                |
| 9:55-10:25       | Panel discussion                                                   | ICLEI – Chiara Collucia +EcoSite leaders      |
| 10:25-10:30      | Wrap up and outlook                                                | ICLEI – Felix Schumacher                      |



Funded by  
the European Union



SYMSITES

# Water reuse – challenges and opportunities

Industrial Urban Symbiosis in Practice:  
Lessons from four EcoSites

Jose Antonio Magdalena

R&D (FOVASA)

29/01/2026

*This project has received funding from the European Union's Horizon Europe program under GA Project 101058426.*





SYMSITES

- 1. Introduction**
- 2. A glance to the directives and laws**
- 3. Spanish EcoSite results for water reuse**
- 4. Take home message**



Funded by  
the European Union



SYMSITES

## 1. INTRODUCTION

### Not enough water

Europe is the fastest warming continent in the world. Many countries are at risk of water scarcity and more frequent droughts. What can we all do?

**38 %**

of the EU population was affected by water scarcity in 2019

**29 %**

of EU territory was affected by water scarcity in 2019

**€2 to 9 billion**

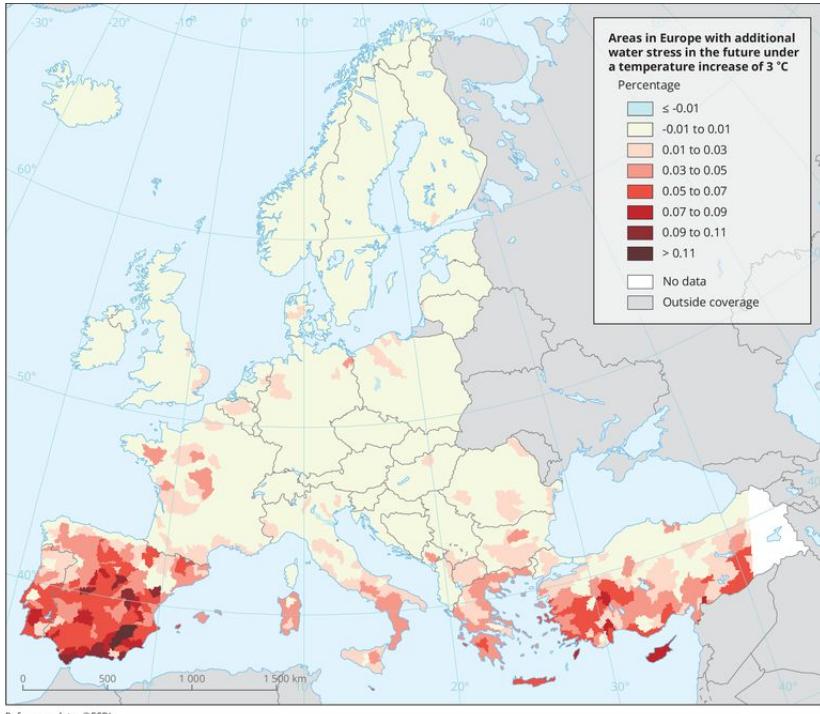
cost of droughts each year

**1 billion m<sup>3</sup>**

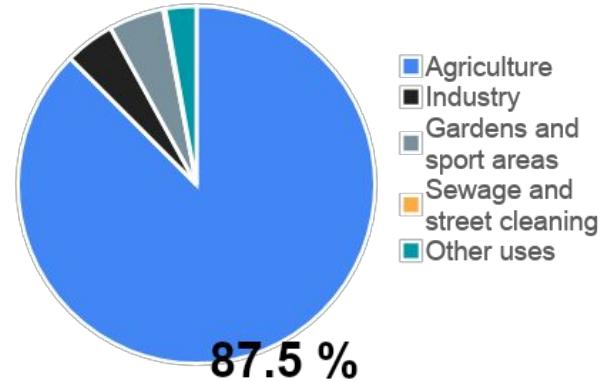
of treated urban wastewater is reused annually

**6 times more**

treated water could be reused than current levels




Funded by  
the European Union




SYMSITES

## 1. INTRODUCTION

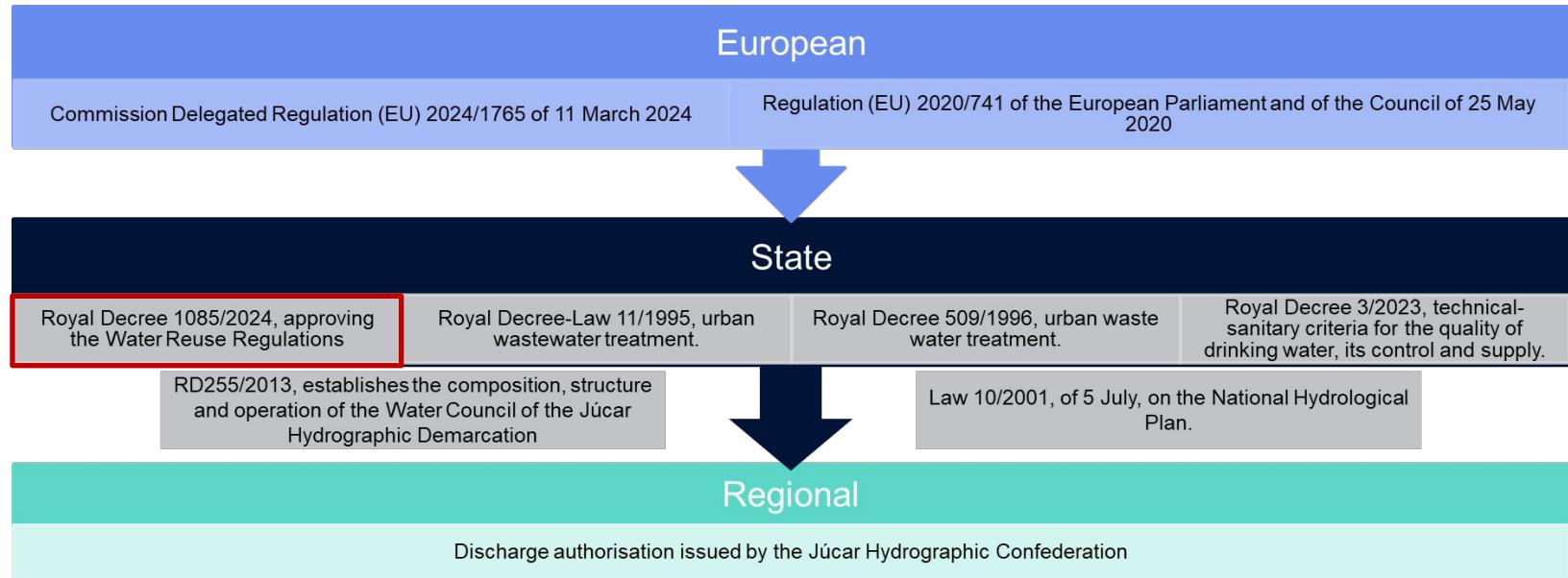


### Water reuse in the Valencian Community



One of the highest rates of wastewater reuse

0.051 m<sup>3</sup> per inhabitant reused daily

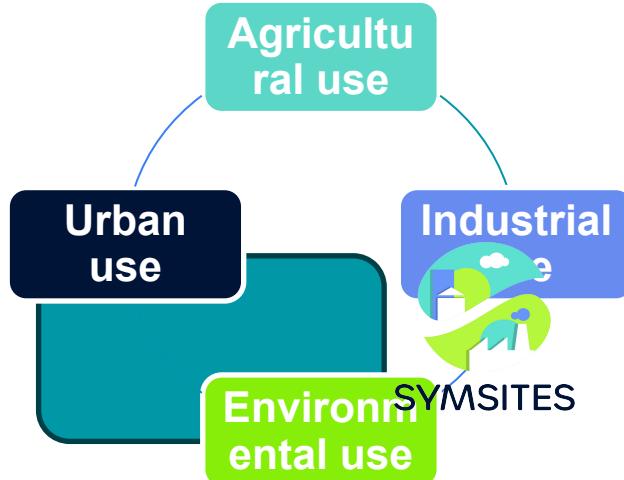



Funded by  
the European Union



SYMSITES

## 2. OBJECTIVE




Funded by  
the European Union



SYMSITES

### 3. RESULTS AND DISCUSSION



**How could be the treated water reused in an IU-S environment?**

**RD 1085/2024**



Funded by  
the European Union



SYMSITES

## 3. RESULTS AND DISCUSSION

### Urban use

| Quality | <i>E.Coli</i><br>(UFC/100 mL) | Turbidity<br>(NTU) | SS<br>(mg/L) | Bacteriophages<br>(UFP/100 mL) | Intestinal<br>nematodes<br>(eggs/10L) | <i>Legionella</i> spp<br>(UFC/L) |
|---------|-------------------------------|--------------------|--------------|--------------------------------|---------------------------------------|----------------------------------|
| A       | 10                            | 5                  | 10           | 100                            | 1                                     | Not detected                     |
| B       | 100                           | -                  | 35           | -                              | -                                     | Not detected                     |
| C       | 1000                          | -                  | 35           | -                              | -                                     | Not detected                     |

### Quality B

- Street cleaning.
- Irrigation of green urban areas (parks and similar).
- Firefighting systems.
- Industrial vehicle washing.





SYMSITES

SYMSITES project – GA number: 101058426

## 4. TAKE HOME MESSAGE

**In water-scarce regions, the question is no longer *if* we reuse water, but *how fast* we scale the technologies to do it.**



Funded by  
the European Union



# THANK YOU VERY MUCH

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. The European Union can not be held responsible for them.



josea.magdalena@nealis.com



Funded by  
the European Union



SYMSITES

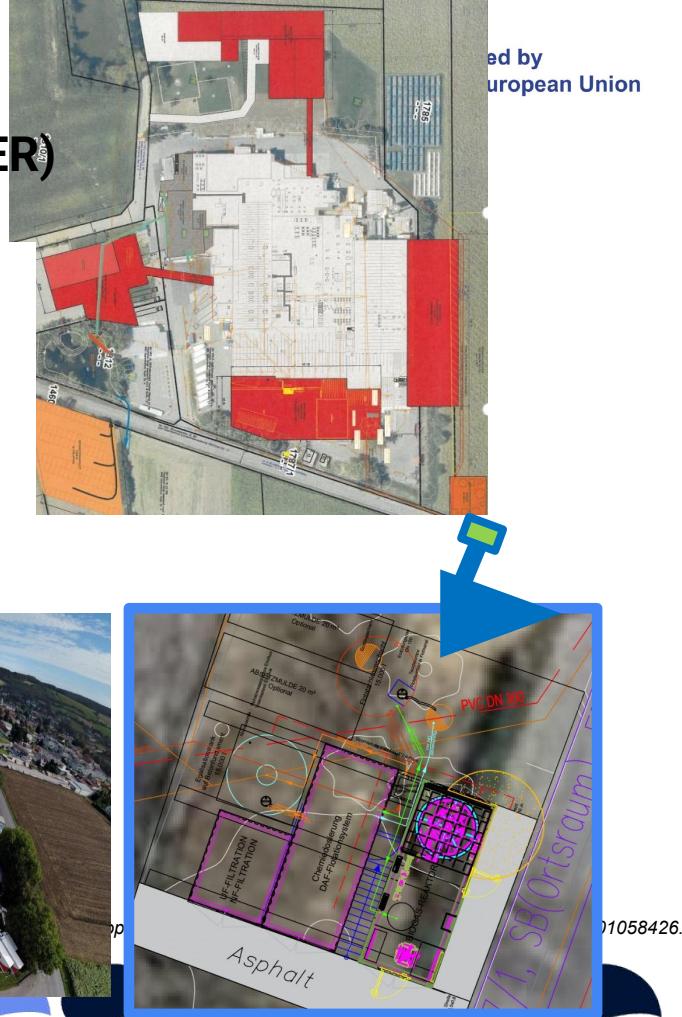


Funded by  
the European Union

# Scaling Austrian Pilot plant for wastewater reuse and biogas production

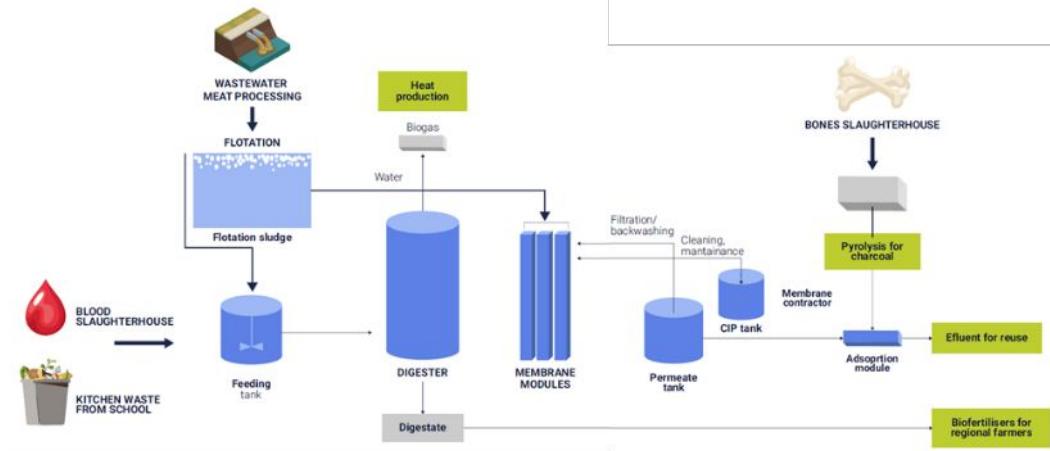
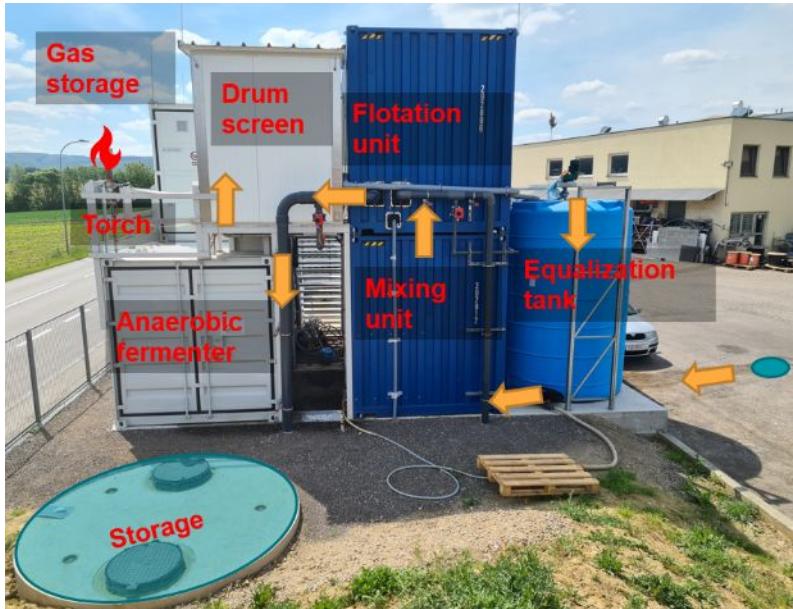
BOKU University

SYMSITES replication webinar


29<sup>th</sup> January 2026

*This project has received funding from the European Union's Horizon Europe program under GA Project 101058426.*

# Location of EcoSite



## Fleischwaren Berger Schinken GmbH (18 BER)

- Ham and meat product producer in the village of Sieghartskirchen
- Family business in the 5th generation
- Over 750 employees in total
- 28,000 tons/year of meat and sausage products
- 10% of the raw material/meat from our own slaughterhouse
- turnover around 150 Mio. €/year
- Wastewater volume up to 650 m<sup>3</sup>/day
- Reuse treated wastewater (cooling purposes)
- Biogas production
- Fertilizer production from digestate



# Task 4.1 Design, building and operation of Austrian EcoSite

## General scheme of the pilot at the Austrian EcoSite



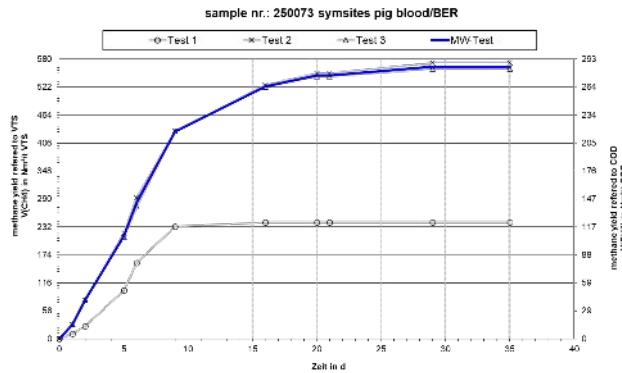


SYMSITES

# Task 4.2 Monitoring and validation

## Industrias and urban uses: I-US

| Parameter                           | Requirement cooling water | After Reverse Osmose                       |
|-------------------------------------|---------------------------|--------------------------------------------|
| pH                                  | 6.5 – 9.2                 | 5.8 ± 1.5                                  |
| Water hardness (CaCO <sub>3</sub> ) | 50 – 750 mg/L             | 2.4 mg/L Ca ≈ 5.99 mg/L CaCO <sub>3</sub>  |
| Alkalinity (CaCO <sub>3</sub> )     | Max 600 mg/L              | 22.3 mg/L Ca ≈ 5.99 mg/L CaCO <sub>3</sub> |
| Dissolved total solids TS           | Max 2050 mg/L             | 0,01 mg/L                                  |
| Chloride                            | Max 300 mg/L              | 1137,8 mg/L                                |
| Sulfate                             | Max 350 mg/L              | <1,32 mg S/L                               |
| Conductivity                        | 3300 µS/cm                | 42,5 µS/cm                                 |
| Suspended solids                    | Max 25 mg/L               | n.a.                                       |


| Parameter        | EU REGULATION 2020/741 category A | After Nanofiltration | After Reverse Osmose |
|------------------|-----------------------------------|----------------------|----------------------|
| E.Coli           | <1 log cfu/100 mL                 | <1 cfu/100mL         | <1 cfu/100mL         |
| BOD <sub>5</sub> | <20 mg/L                          | 48.0 mg/L            | 4.3 mg/L             |
| TSS              | <20 mg/L                          | 1.8 mg/L             | 0.0 mg/L             |
| Turbidity (NTU)  | ≤ 5                               | 0.4                  | 0.6                  |

Funded by  
the European Union

# Task 4.2 Monitoring and validation

## Pilot operational conditions – reactor inlet streams/substrates

| Streams<br>Parameter | Wastewater untreated | Flotation sludge | Pig blood |
|----------------------|----------------------|------------------|-----------|
| pH [-]               | 7.42                 | 5.9              | 8.20      |
| VFA (mg/l)           | 129                  | 1 185.4          | 14        |
| COD (g/kg)           | 4.52                 | 27.0             | 312       |
| TS (%)               | 0.87                 | 2.6              | 16.98     |
| VTS (%)              | 0.27                 | 1.8              | 15.72     |
| TKN (g/kg)           | 0.26                 | 2.2              | 32.21     |
| NH4 (g/kg)           | 0.02                 | 0.5              | 1.63      |



| Y(CH <sub>4</sub> ) in Nm <sup>3</sup> /t (FM)  | result |
|-------------------------------------------------|--------|
| Y(CH <sub>4</sub> ) in Nm <sup>3</sup> /t (COD) | 285,2  |
| Y(CH <sub>4</sub> ) in Nm <sup>3</sup> /t (VTS) | 566,1  |



Funded by  
the European Union



SYMSITES

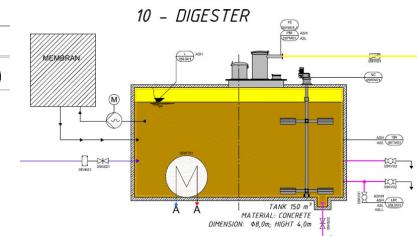
# Full scale plant

## Fleischwaren Berger Schinken GmbH (18 BER)

1. Substrate mixture: biomethane potential (BMP-tests)
2. Organic loading rate digester (kg oDS/(m<sup>3</sup>\*day))
3. Hydraulic retention time in digesters (days)
4. Nitrogen concentration in substrate mixture (NH<sub>3</sub> inhibition)
5. Digestate/fertilizer concept

|                         | input fresh mass<br>[ t/a ] | input oDS<br>[ kg/d ] | gas production<br>[ Nm <sup>3</sup> /t oDS ] | gas production<br>[ Nm <sup>3</sup> /d ] |
|-------------------------|-----------------------------|-----------------------|----------------------------------------------|------------------------------------------|
| <b>substrates</b>       |                             |                       |                                              |                                          |
| blood                   | 266                         | 126                   | 685                                          | 86                                       |
| intestinal package      | 585                         | 175                   | 823                                          | 144                                      |
| fat from fat separation | 522                         | 77                    | 900                                          | 70                                       |
| flotation sludge        | 16200                       | 1997                  | 718                                          | 1434                                     |
| food waste              | 80                          | 36                    | 760                                          | 28                                       |
|                         | <b>17653</b>                |                       |                                              | <b>1762</b>                              |

|                      | main digester |                            |  |
|----------------------|---------------|----------------------------|--|
| volume               | 1199          | m <sup>3</sup>             |  |
| diameter             | 12            | m                          |  |
| height               | 11.6          | m                          |  |
| retention time       | 25            | d                          |  |
| organic loading rate | 2.01          | kg oDS/(m <sup>3</sup> *d) |  |


|                      | post digester |                            |  |
|----------------------|---------------|----------------------------|--|
| volume               | 792           | m <sup>3</sup>             |  |
| diameter             | 12            | m                          |  |
| height               | 8             | m                          |  |
| retention time       | 17            | d                          |  |
| organic loading rate | 1.29          | kg oDS/(m <sup>3</sup> *d) |  |



Picture: AAT-biogas



Picture: AAT-biogas



This project has received funding from the European Union's Horizon Europe program under GA Project 101058426.



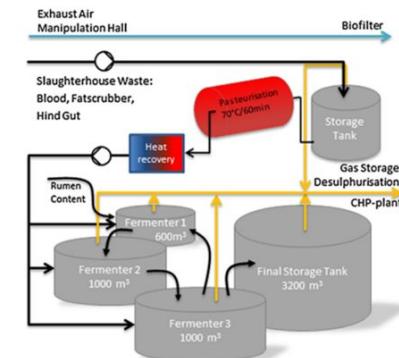


SYMSITES

# Monitoring and validation

## Industrias and urban uses: I-US

| GHDWLFDMRQRJISRMQADSSOFDMRQVIRIWHDMGIZDMURMHSURGXFWAPELRVVDMWH\$XWMDQFR6LMITXOQHJHGS                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                        | ( VMP DMGHDLDQHG                                                                                                                                                                                                                                                                                     | 4 XDWUHTXWHGIDSSOFDEOIHUXQMRQ                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <b>Agricultural Uses</b> <ul style="list-style-type: none"> <li><b>Treated water:</b> Irrigation of crops (sugar beet, grapevine, fruit crops, grassland)</li> <li><b>Biogas Digestate:</b> fertilizer for farmers/fields</li> <li><b>Pig manure:</b> additional future substrate for full scale biogas plant</li> </ul>                                                                        | <ul style="list-style-type: none"> <li><b>Treated water:</b> 1000-3000 m<sup>3</sup>/ha/year</li> <li><b>Biogas digestate:</b> 170-210 kg nitrogen/ha/year</li> <li><b>Pig manure:</b> 50 farmers, 64800 pigs/year = 52000 m<sup>3</sup>/manure/year = around 6000 MWh/year</li> </ul> | <ul style="list-style-type: none"> <li><b>Treated water:</b> Austrian Water Rights Act;1959 (Wasserrechtsgesetz, WRG); EU Regulation 2020/741 on minimum requirements for water reuse</li> <li><b>Biogas digestate:</b> national fertilizer regulation (2004 BGBl); EU-regulation 2092/91</li> </ul> |   |
| <b>Municipal Uses</b> <ul style="list-style-type: none"> <li><b>Treated water:</b> <ul style="list-style-type: none"> <li>Irrigation of young trees</li> <li>Irrigation of lawn of soccer field and outdoor pool</li> </ul> </li> <li><b>Surplus heat of biogas CHP:</b> <ul style="list-style-type: none"> <li>Heating and hot water supply for nearby apartment blocks</li> </ul> </li> </ul> | <ul style="list-style-type: none"> <li><b>Young trees:</b> around 150 young trees;</li> <li><b>Soccer field:</b> around 20-40 L/m<sup>2</sup>/week; 3000 m<sup>3</sup>/year</li> <li><b>Heating apartments:</b> around 90 apartments; 4000m<sup>2</sup>, 200 MWh</li> </ul>            | <ul style="list-style-type: none"> <li><b>Treated water:</b> Austria has chosen opt out: EU Regulation 2020/741 on minimum requirements for water reuse</li> </ul>                                                                                                                                   |  |
| <b>Industrial Uses</b> <ul style="list-style-type: none"> <li><b>Treated water:</b> <ul style="list-style-type: none"> <li>Cooling water for Berger Schinken (BER)</li> </ul> </li> </ul>                                                                                                                                                                                                       | <ul style="list-style-type: none"> <li><b>Cooling water:</b> 40 m<sup>3</sup> to 60 m<sup>3</sup> cooling water/day; 20000 m<sup>3</sup> per year</li> </ul>                                                                                                                           | <ul style="list-style-type: none"> <li><b>Cooling water:</b> EU REGULATION 2020/741 category A</li> </ul>                                                                                                                                                                                            |  |




# Biogas plant at slaughterhouse company „Grossfurtner“

- Slaughterings: around 550 000 pigs/year, 50 000 cattle/year
- Year of realization: 2003
- CapEx: approx. 1.8 Mio. € (first stage)
- Biogas production: 5 000 m<sup>3</sup>/Tag (67%-69% CH<sup>4</sup>)
- Electrical power: 525 kWel
- CSTR-digesters: 1 x 600 m<sup>3</sup>, 2 x 1 000 m<sup>3</sup>
- Substrates/year: 2 000 m<sup>3</sup> blod, 1 000 t rumen content  
3 000 gut content, 4 000 t fat from fat separation
- Pre-treatment: continuous hygienization/sanitation
- CO<sub>2</sub> Reduction: 2 464 t/year
- Other heat sources: natural gas, geothermal energy



Foto: Rudolf Großfurtner GmbH



Ortner et. al. 2015


 Funded by  
the European Union



SYMSITES

# Webinar Agenda – Audience poll

| Time (CET)       | Agenda item                                                        | Speaker                                  |
|------------------|--------------------------------------------------------------------|------------------------------------------|
| 9:00-9:05        | Welcome                                                            | ICLEI – Felix Schumacher                 |
| 9:05-9:15        | Replicating I-US solutions – setting the scene                     | ICLEI – Nikolai Jacobi                   |
| 9:15-9:22        | The SYMSITES EcoSites and their pilot systems                      | AITEX – Emma Pérez                       |
| 9:22-9:29        | Water reuse – challenges and opportunities                         | FOVASA - Jose Antonio Magdalena Cadelo   |
| 9:29-9:36        | Scaling of a pilot biogas plant for wastewater reuse               | BOKU – Wolfgang Gabauer                  |
| <b>9:36-9:41</b> | <b>Mentimeter poll</b>                                             | <b>ICLEI + Audience</b>                  |
| 9:41-9:48        | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen         |
| 9:48-9:55        | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos           |
| 9:55-10:25       | Panel discussion                                                   | ICLEI – Chiara Collucia +EcoSite leaders |
| 10:25-10:30      | Wrap up and outlook                                                | ICLEI – Felix Schumacher                 |



Funded by  
the European Union



SYMSITES

## Join us on Menti!

Go to [menti.com](https://menti.com) and use the code 7449 9810 or scan the QR code!



Funded by  
the European Union



SYMSITES

# Webinar Agenda – Material sourcing for the EcoSites

| Time (CET)       | Agenda item                                                               | Speaker                                  |
|------------------|---------------------------------------------------------------------------|------------------------------------------|
| 9:00-9:05        | Welcome                                                                   | ICLEI – Felix Schumacher                 |
| 9:05-9:15        | Replicating I-US solutions – setting the scene                            | ICLEI – Nikolai Jacobi                   |
| 9:15-9:22        | The SYMSITES EcoSites and their pilot systems                             | AITEX – Emma Pérez                       |
| 9:22-9:29        | Water reuse – challenges and opportunities                                | FOVASA - Jose Antonio Magdalena Cadelo   |
| 9:29-9:36        | Scaling of a pilot biogas plant for wastewater reuse                      | BOKU – Wolfgang Gabauer                  |
| 9:36-9:41        | Mentimeter poll                                                           | ICLEI + Audience                         |
| <b>9:41-9:48</b> | <b>Material sourcing – the importance of properly separating waste</b>    | <b>BOFA – Mathias Kjærgaard Knudsen</b>  |
| <b>9:48-9:55</b> | <b>Material sourcing – valorisation opportunities of different wastes</b> | <b>NTUA – Dr. Gerasimos Lyberatos</b>    |
| 9:55-10:25       | Panel discussion                                                          | ICLEI – Chiara Collucia +EcoSite leaders |
| 10:25-10:30      | Wrap up and outlook                                                       | ICLEI – Felix Schumacher                 |



Funded by  
the European Union



## Danish EcoSite and waste separation

Mathias Kjærgaard, Project Manager, BOFA, Regional Municipality of Bornholm





S



Funded by  
the European Union

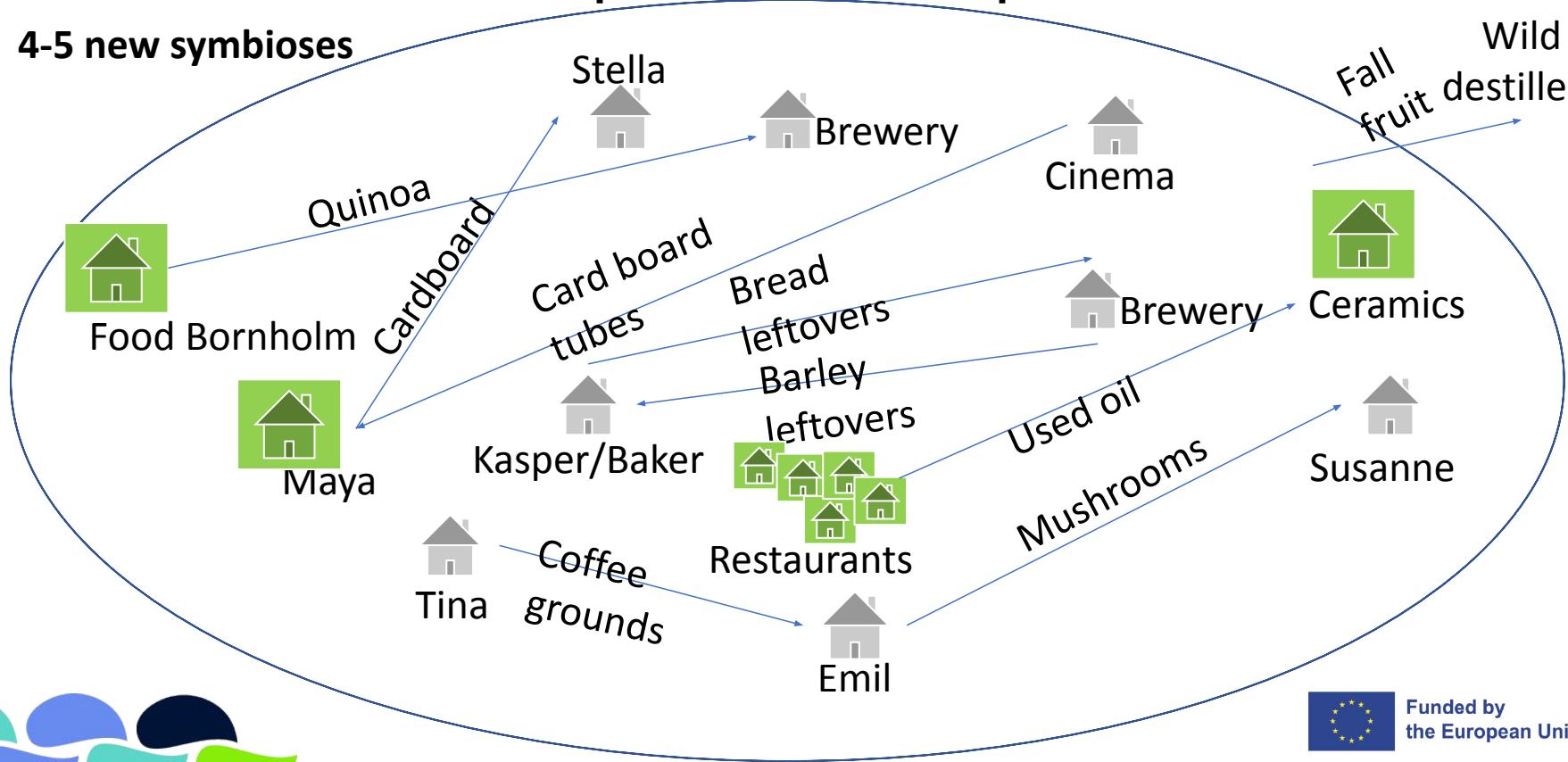


S

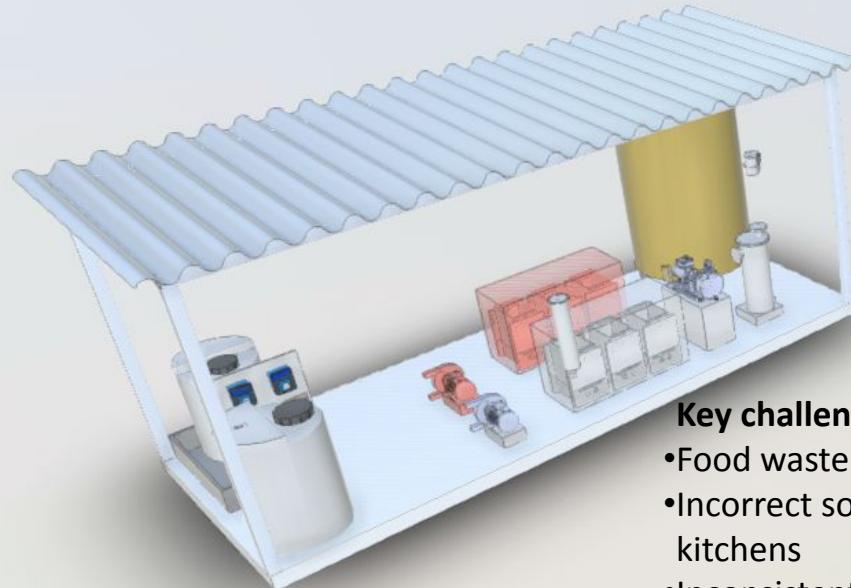


Funded by  
the European Union




SYMSITES




Henrik /  
Wild  
destillery

## T5.1 Development of the social spin-off

- 4-5 new symbioses



Funded by  
the European Union



### Key challenges

- Food waste grinders and the quality of input material
- Incorrect sorting at restaurants and commercial kitchens
- Inconsistent sorting in households
- Lack of user convenience
- Economic constraints and cost structures



Funded by  
the European Union



SYMSITES

### **Partnership schools**

BOFA has cooperation agreements with all the schools on Bornholm. The schools commit to sending all their students through a green education course at least three times. There are different levels that are adapted to the age group. In this way, all Bornholm students get a green education about resources such as waste.

SYMSITES spin off – granted 60000 euro from the Ministry of Children and Education to develop material for high schools.

(Circular economy and resource symbiosis. Practical learning about sustainability)

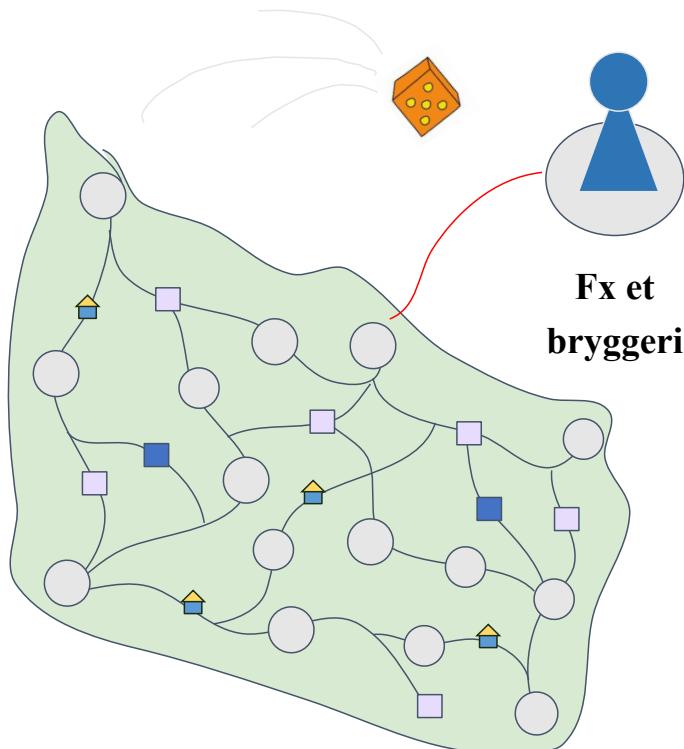
Started Q1 2025 – Done Q4 2025.



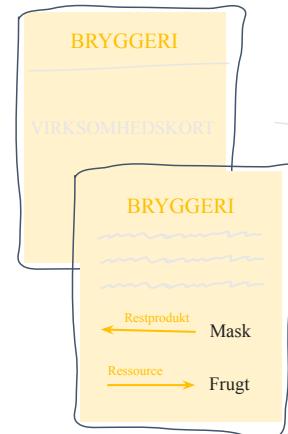
Funded by  
the European Union



SYMSITES

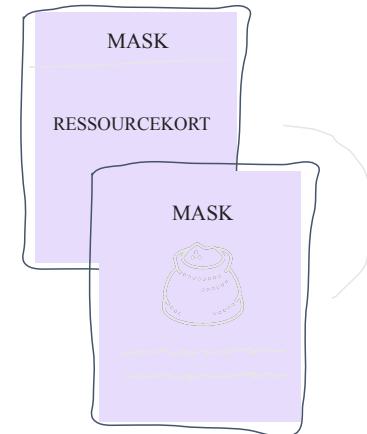

## Cardboard game




Funded by  
the European Union



SYMSITES




Virksomhedskort



Bagseite med  
information

Ressourcekort



Bagseite med  
information

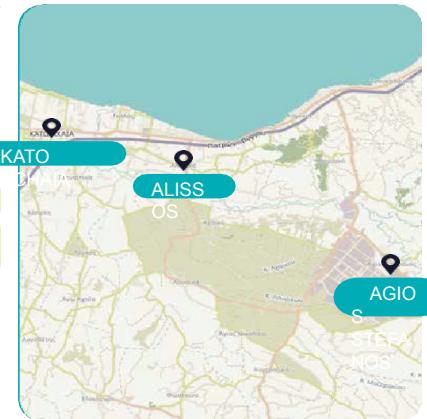


Funded by  
the European Union



**Thank you for your attention!**

Mathias Kjærgaard, Project Manager, BOFA, Regional Municipality of Bornholm






SYMSITES

# Greek Ecosite

- The **Greek EcoSite** is located at the wastewater treatment plant (WWTP) in the municipality of Western Achaia.
- This urban-industrial symbiosis extends over a larger area of approximately 13.5 km<sup>2</sup>, encompassing municipality of West Achaia, the industrial zone, and the WWTP.



NATIONAL TECHNICAL UNIVERSITY  
OF ATHENS (NTUA)  
Manager of the EcoSite

SIRMET S.A. (SIRMET)  
Developer of the Ecosite

MUNICIPALITY OF WESTERN  
ACHAIA (MWA)  
Operator of the WWTP

ELAIOURGIKES  
EPIHEIRISEIS PATRON S.A.  
(EEP)  
Partner from the olive oil industry



Funded by  
the European Union



# Greek Ecosite

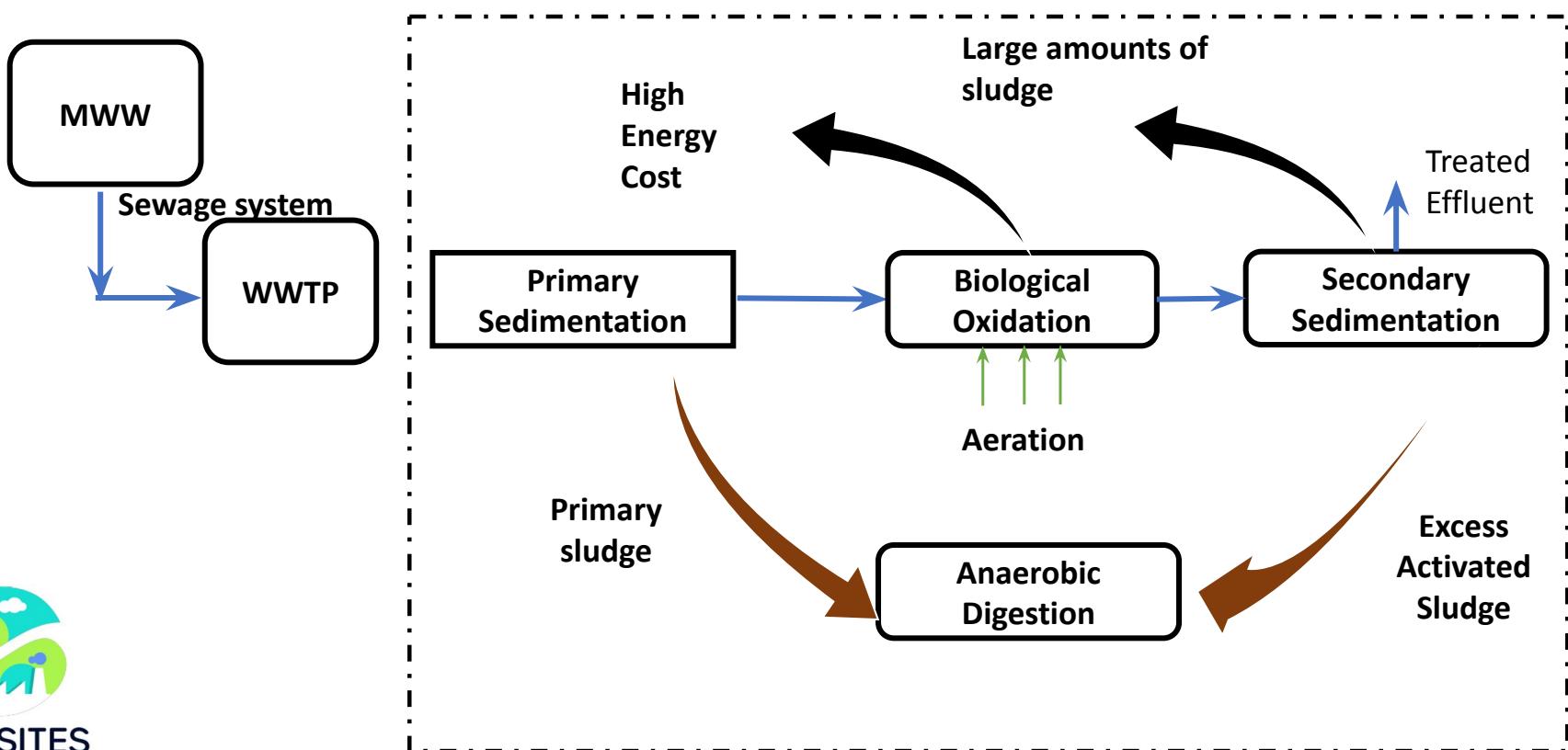


The **main objective** of the Greek EcoSite is to treat industrial and municipal wastewater (MWW) from the municipality of Western Achaia, along with food waste.

This treatment process aims to produce hydrogen, methane in AnMBR, compost, and water for irrigation.

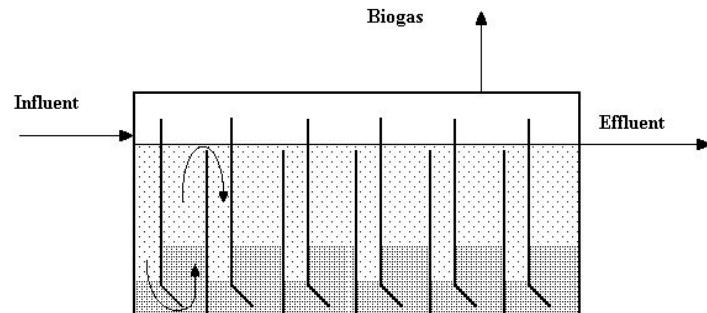
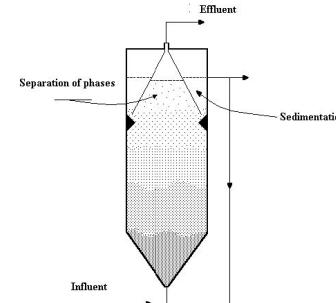


Funded by  
the European Union




SYMSITES

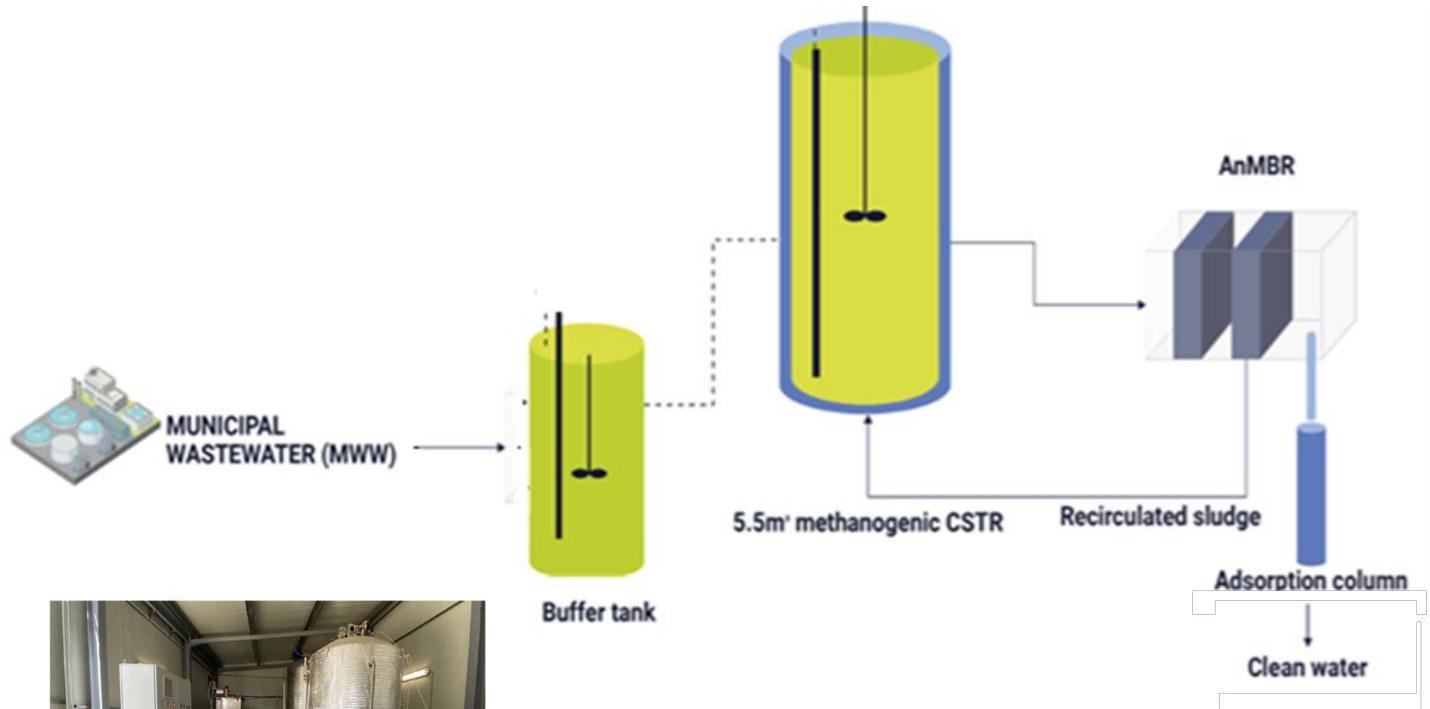
SYMSITES project – GA number: 101058426


# Conventional Wastewater Treatment Process



# HIGH-RATE DIGESTION OF MUNICIPAL WASTEWATER


- ✓ Instead of the costly activated sludge process, high-rate anaerobic digestion systems (anaerobic filters, UASB, ABR, etc) could be used for municipal wastewater treatment
- ✓ Significant energy savings (no aeration needed and biogas produced) and less sludge generated
- ✓ Limitation: low-strength (COD) wastewater





SYMSITES

## An alternative is the use of an anaerobic membrane bioreactor



Funded by  
the European Union

# FOOD WASTE DRYING

FOOD WASTE



59 kg



FORBI  
19 kg



CONDENSATE  
40 kg



SYMSITES



GREECE  
olive oil  
industry



Olive Industry Wastewater (OIWW)

High season  
(November to March)

Low season  
(April to October)



Drying/shredding Food Waste



Liquid Fraction of Food Waste  
(Condensate)



West Achaia wastewater treatment plant

Municipal Wastewater (MWW)

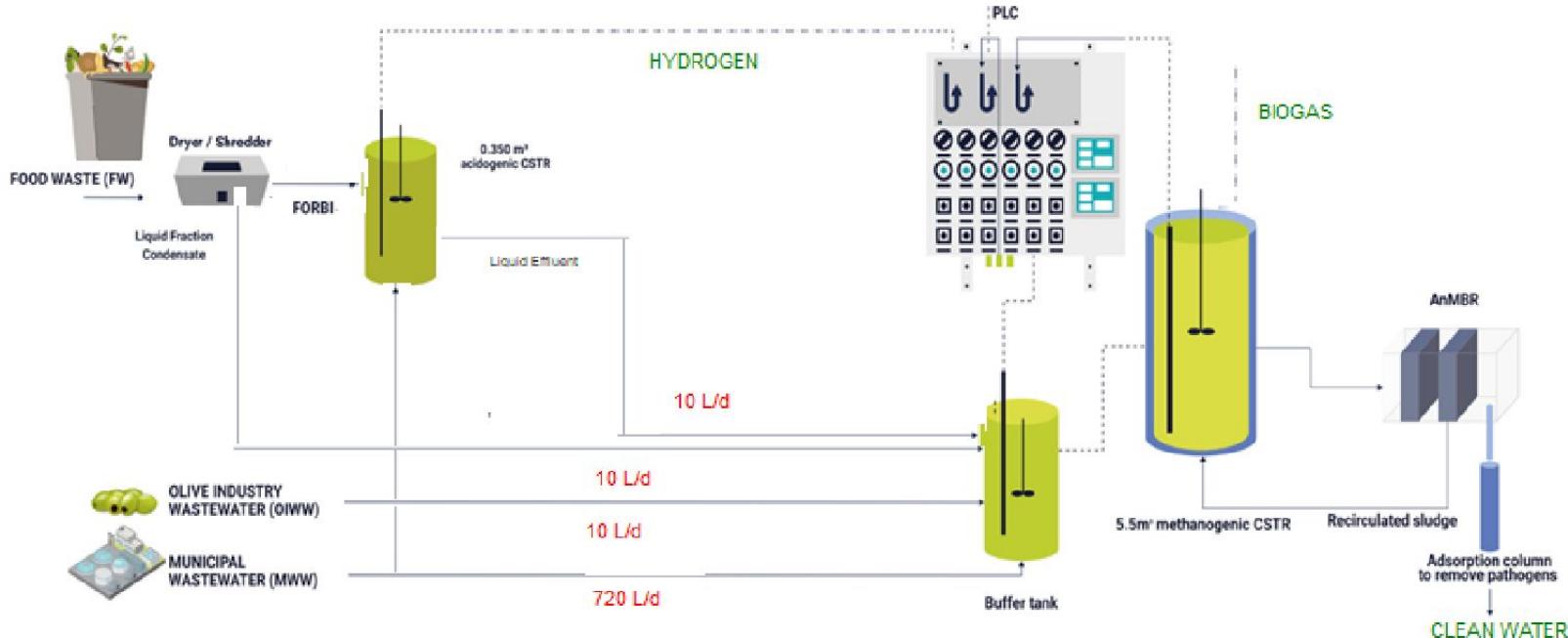


Funded by  
the European Union



SYMSITES

## Wastewater streams characteristics


|          | MWW  | OIWW | Condensate |
|----------|------|------|------------|
| pH       | 7.3  | 4.5  | 3.7        |
| TSS g/ L | 0.7  | 0.8  | 0.1        |
| VSS g/ L | 0.46 | 0.65 | 0.03       |
| tCOD g/L | 0.9  | 133  | 4.5        |
| sCOD g/L | 0.4  | 116  | 4.5        |



Funded by  
the European Union



SYMSITES



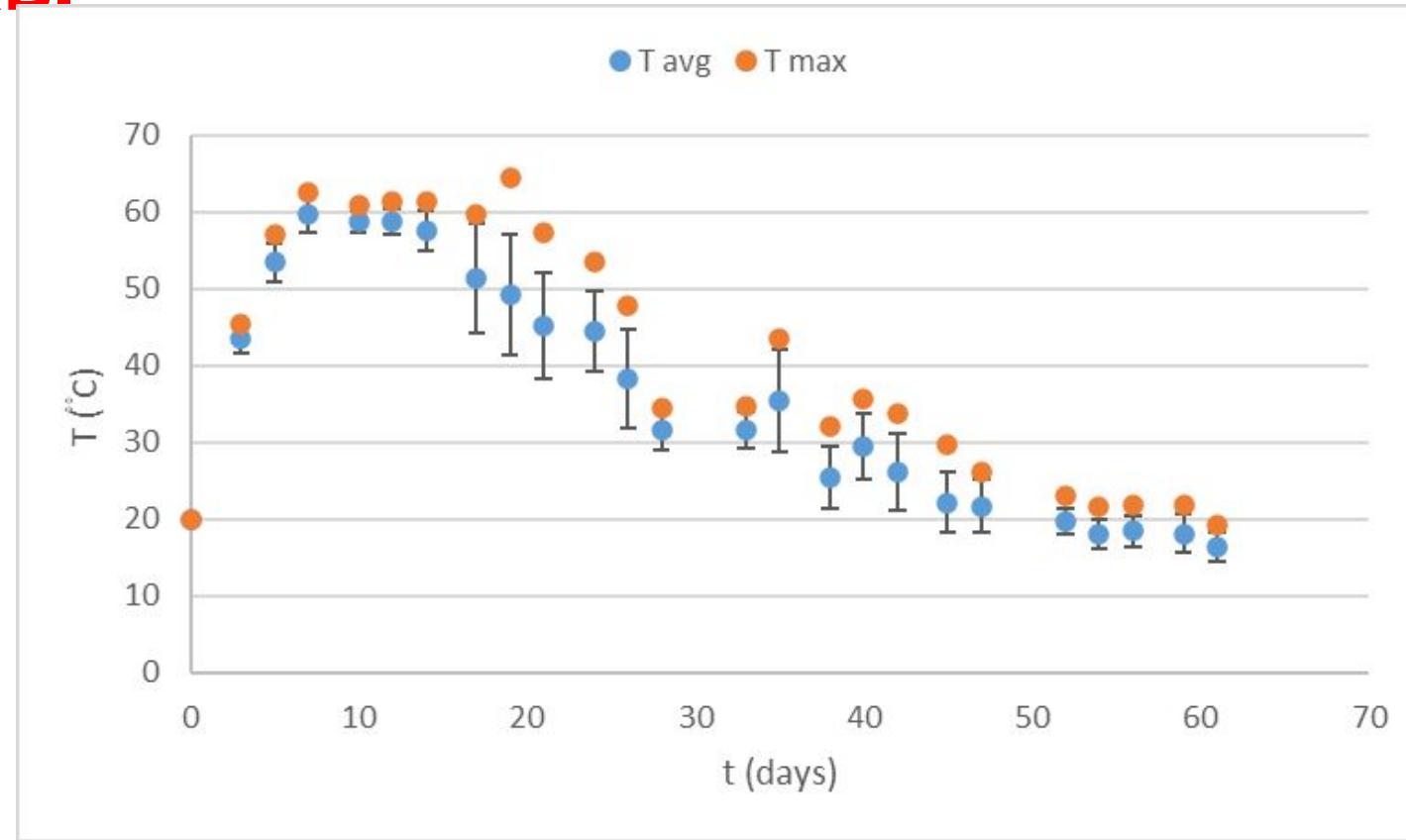
Funded by  
the European Union

# CONCLUSIONS FROM TREATING EFFLUENT WITH BIOCHAR FROM OLIVE STONE

- Treatment with biochar from pyrolyzed olive stone removes most of the organic carbon
- The concentrations of emerging contaminants is significantly reduced to acceptable levels.

# COMPOSTING

3 composting experiments (250 L composters) were carried out with the following mixture characteristics:


COMPOST 1: 50% prunings and 50% olive stone

COMPOST 2: 50% prunings and 50% FORBI

COMPOST 3: 34% prunings, 33% olive stone, 33% FORBI

Water was added to maintain moisture level close to 50%.

# COMPOST 3: 34% prunings, 33% olive stone, 33% FORBI



# Benefits for the Municipality and the Industry

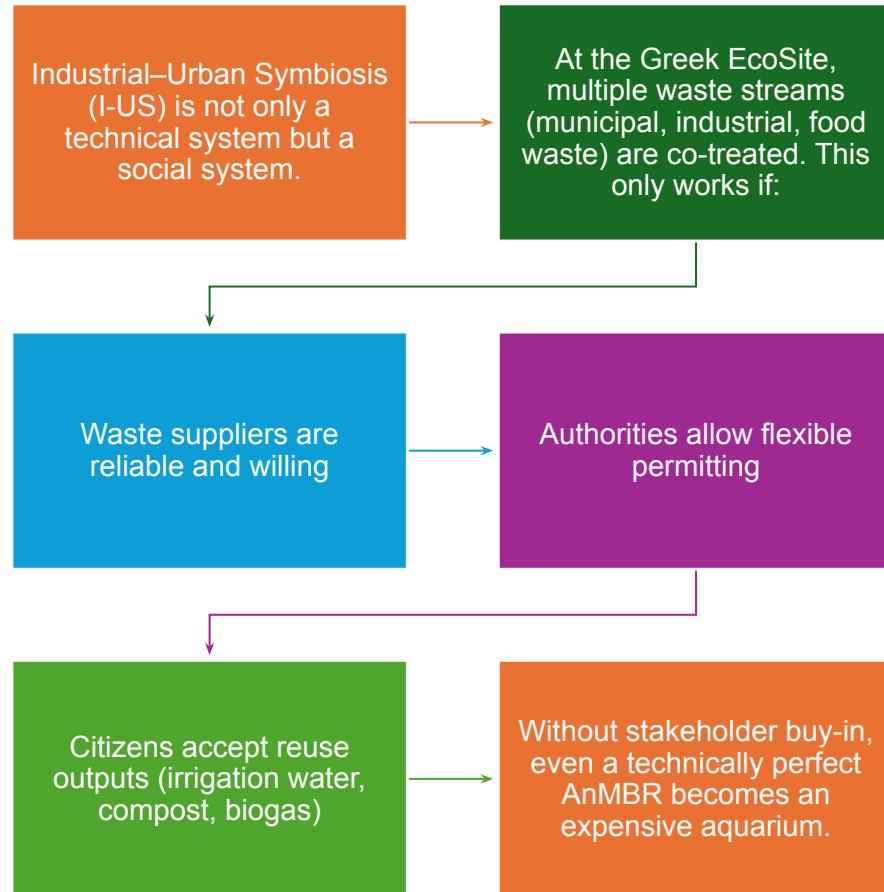
- Municipality
  - (a) cheaper treatment (no cost for aeration and sludge management)
  - (b) compost for use in parks etc.
  - (c) hydrogen to be used as a fuel
  - (d) water for irrigation
- Industry:
  - (a) no treatment cost
  - (b) biogas (following upgrade to be used as BioCNG for vehicles)
  - (c) Water for washing and/or process
  - (d) compost



SYMSITES

# Webinar Agenda – Panel discussion

| Time (CET)        | Agenda item                                                        | Speaker                                         |
|-------------------|--------------------------------------------------------------------|-------------------------------------------------|
| 9:00-9:05         | Welcome                                                            | ICLEI – Felix Schumacher                        |
| 9:05-9:15         | Replicating I-US solutions – setting the scene                     | ICLEI – Nikolai Jacobi                          |
| 9:15-9:22         | The SYMSITES EcoSites and their pilot systems                      | AITEX – Emma Pérez                              |
| 9:22-9:29         | Water reuse – challenges and opportunities                         | FOVASA - Jose Antonio Magdalena Cadelo          |
| 9:29-9:36         | Scaling of a pilot biogas plant for wastewater reuse               | BOKU – Wolfgang Gabauer                         |
| 9:36-9:41         | Mentimeter poll                                                    | ICLEI + Audience                                |
| 9:41-9:48         | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen                |
| 9:48-9:55         | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos                  |
| <b>9:55-10:25</b> | <b>Panel discussion</b>                                            | <b>ICLEI – Chiara Collucia +EcoSite leaders</b> |
| 10:25-10:30       | Wrap up and outlook                                                | ICLEI – Felix Schumacher                        |




Funded by  
the European Union

# Main Lessons Learned

- Anaerobic membrane bioreactors (ANMBRs) are perfect and economically viable systems for municipal wastewater (MWW) treatment
- Industrial wastewater may be co-treated with MWW increasing the production of biogas that may be used as a fuel or for the production of electricity
- Municipal food waste may be dried and shredded providing a liquid stream (condensate) that may be effectively cotreated in an AnMBR along with the other streams, and a solid fraction that may be used for the production of hydrogen or composted along with prunings and/or olive stone to produce high quality for compost
- The AnMBR effluent may be treated with biochar generated from olive stone to generate water suitable for irrigation
- I-US reduces the overall treatment cost while producing useful products such as biogas, hydrogen, water, compost and bioplastics

# Why stakeholder involvement is structurally critical



# Stakeholder involvement



Dissemination activities in **schools and the general public** are very important for raising the awareness and securing social acceptance of an industrial-urban symbiosis framework



Dissemination activities with **municipality** are important so that the mutual benefits of I-US are properly understood and potential barriers are identified and addressed



Dissemination activities with **industries** in the region are important so that they can seek and identify the possible opportunities that arise from I-US.



Dissemination activities with **regulatory officials** are important so that a proper legal framework is developed and possible financing is secured.

# Stakeholder mapping (who is involved)

- **Primary operational stakeholders**
  - Municipality of Western Achaia (MWW, food waste, public acceptance)
  - Olive oil industry (OIWW supplier, by-product valorisation)
  - WWTP operators (system performance, day-to-day feasibility)
- **Secondary enabling stakeholders**
  - Regulatory authorities (permits, reuse standards, financing frameworks)
  - Schools and general public (social licence to operate)
  - Regional industries (future replication and scale-up)

# Barriers identified and neutralised through involvement

This is where stakeholder involvement becomes a **problem-solving tool**, not a checkbox.

## Typical barriers addressed through engagement:

- Fear of wastewater reuse in agriculture
- Uncertainty about co-treating industrial and municipal waste
- Regulatory hesitation around novel technologies (AnMBR, biochar polishing)
- Industry scepticism about reliability and costs

## Through early and continuous dissemination, these barriers were:

- Identified before scale-up
- Discussed using real performance data
- Reduced through shared ownership of outcomes



# Lessons learned

## The transferable insights

- Stakeholder involvement must start **before** technology deployment
- Public communication is as important as process optimization
- Regulatory dialogue enables innovation rather than blocking it
- I-US success depends on trust loops, not linear supply chains





**WELCOME TO THE**  
**SYMSITES PROJECT EUROPE 2021- NON-TECHNOLOGICAL  
CONSTRAINTS (LEGISLATIVE, FINANCIAL, INFORMATION  
ISSUES, SOCIAL ACCEPTANCE) ON URBAN-INDUSTRIAL  
SYMBIOSIS**  
**MEET THE SPEAKERS**

|                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                               |                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br><b>Aggelos Karatzas</b><br>DEPUTY MAYOR OF<br>SANITATION & ENVIRONMENT<br>ENVIRONMENT-GREEN<br>SPACES MUNICIPALITY<br>OF WEST ACHAIA | <br><b>Gerasimos Lyberatos</b><br>PROFESSOR AT<br>THE POLYTECHNIC<br>UNIVERSITY OF<br>ATHENS<br>SP. IN THE FIELD<br>OF BIOTECHEMICAL<br>AND ENVIRONMENTAL<br>TECHNOLOGIES. | <br><b>George Syriopoulos</b><br>MANAGING<br>DIRECTOR<br>SIRMET S.A. | <br><b>Dimitris Livadiros</b><br>CHAIRMAN OF THE<br>PANHELLENIC<br>ASSOCIATION<br>OF INDUSTRIAL<br>AREAS<br>OF GREECE | <br><b>Ourania Zissi</b><br>DIRECTORATE OF<br>ENVIRONMENT &<br>INDUSTRIAL PLANNING<br>OF WESTERN GREECE | <br><b>Stathis Sideris</b><br>REPRESENTATIVE<br>FROM THE<br>CHAMBER OF<br>COMMERCE OF<br>ACHAIA |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

11th September 2024 event at Old Town Hall Olenia,  
Louisia at 11:00 am

  
Funded by the European Union



# WORKSHOP FOR NON-TECHNOLOGICAL BARRIER

---

# Information on Waste Sorting and I-US at the Ano Alissos Primary School

---



## Information on Waste Sorting at the old Townhall of Iousika





## ΠΡΟΣΚΛΗΣΗ

### **Βιομηχανική και Αστική-Συμβίωση**

Απαραίτητη προϋπόθεση για μια βιώσιμη και κυκλική οικονομία.

Ο Δήμος Δυτικής Αχαΐας σε συνεργασία με το Εθνικό Μετσόβιο Πολυτεχνείο, την εταιρεία ΣΥΡΜΕΤ Α.Ε. και τις Ελαιούργικες Επιχειρήσεις Πατρών σας προσκαλούν την Δευτέρα 15 Μαΐου 2023 στο Δημοτικό σχολείο Αλισσάν και ώρα 10:00 την προκειμένου να σας παρουσιάσετε το Ευρυταϊκό χρηματοδοτούμενό έργο "SYMSITES".



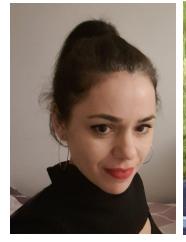
www.symsites.eu  
Funded by the European Union  
author(s) only and do not  
Union can not be held



**Industrial–Urban Symbiosis only works if society  
understands that “waste” is a resource in the wrong place.**

# Building the Brown Bin Network in Alisos at MWA: How the SYMITES Project Turns Waste into Resources






SYMSITES

SYMSITES project – GA number: 101058426



# The Greek Team of EcoSite



Funded by  
the European Union

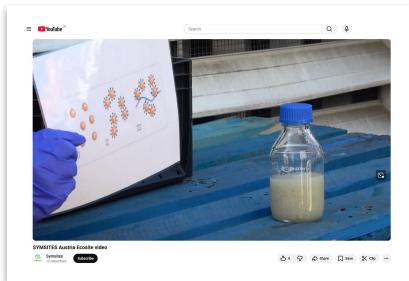


SYMSITES

# Webinar Agenda – Wrap up

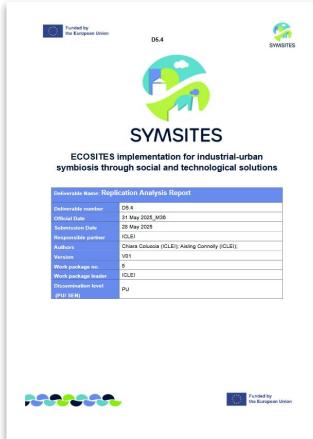
| Time (CET)         | Agenda item                                                        | Speaker                                  |
|--------------------|--------------------------------------------------------------------|------------------------------------------|
| 9:00-9:05          | Welcome                                                            | ICLEI – Felix Schumacher                 |
| 9:05-9:15          | Replicating I-US solutions – setting the scene                     | ICLEI – Nikolai Jacobi                   |
| 9:15-9:22          | The SYMSITES EcoSites and their pilot systems                      | AITEX – Emma Pérez                       |
| 9:22-9:29          | Water reuse – challenges and opportunities                         | FOVASA - Jose Antonio Magdalena Cadelo   |
| 9:29-9:36          | Scaling of a pilot biogas plant for wastewater reuse               | BOKU – Wolfgang Gabauer                  |
| 9:36-9:41          | Mentimeter poll                                                    | ICLEI + Audience                         |
| 9:41-9:48          | Material sourcing – the importance of properly separating waste    | BOFA – Mathias Kjærgaard Knudsen         |
| 9:48-9:55          | Material sourcing – valorisation opportunities of different wastes | NTUA – Dr. Gerasimos Lyberatos           |
| 9:55-10:25         | Panel discussion                                                   | ICLEI – Chiara Collucia +EcoSite leaders |
| <b>10:25-10:30</b> | <b>Wrap up and outlook</b>                                         | <b>ICLEI – Felix Schumacher</b>          |



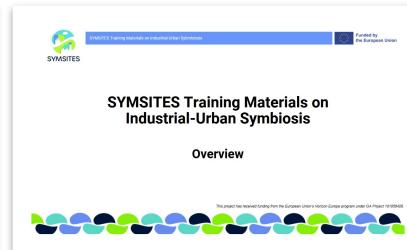

Funded by  
the European Union



SYMSITES


# SYMSITES replication guidance package

## Virtual tours




[www.youtube.com/  
@symsitesproject](https://www.youtube.com/@symsitesproject)

## Replication analysis



## I-US Training materials



## Dissemination webinar



... and more

Visit our website: <https://symsites.eu/>



Funded by  
the European Union



SYMSITES

## Upcoming opportunities

Would you like to stay in touch about SYMSITES and I-US opportunities? Let us know by following out this [form](#):



Funded by  
the European Union



SYMSITES

# Stay informed!

About the SYMSITES project



SYMSITES

Industrial -Urban Symbiosis: the necessary step to achieve a real circular economy

<https://www.linkedin.com/company/symsites/>



About Circular Cities



**Circular Cities Declaration Europe**

Connecting European cities and regions to drive the shift to a circular economy. Insights, stories, and opportunities.

<https://www.linkedin.com/company/circular-cities-declaration-eu/>



Funded by  
the European Union



SYMSITES

# Thank you!



Funded by  
the European Union



SYMSITES

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union.  
The European Union can not be held responsible for them.



Funded by  
the European Union